



Hyundai-NGV Open R&D Seminar

#### Efficiencies in 3D Environment Understanding for Future Autonomous Driving

#### Li Li

Department of Computer Science Durham University

li.li4@durham.ac.uk | https://www.luisli.org

## **Durham University**



- 3<sup>rd</sup> oldest university in England (1832)
- World leading university (top 100)
- Top 20 in the world for sustainability
- UK ranking: top 10
- Computer Science
- Computer Science
  - NVIDIA CUDA Research Centre
  - Intel Parallel Computing Centre





#### **Our Research Team**



Embracing EDI: United in Diversity, Committed to Equity, and Fostering Inclusion for All



**Current Team:** Toby Breckon, Joshua Podmore, Jack Barker, Neelanjan Bhowmik, Yona Gaus, Brian Isaac-Medina, Seyma Yucertektas, Hiroshi Sasaki, Li (Luis) Li, Richard Boulderstone, Jiaxu (Judge) Liu, Wenke (Tom) E, Ghada Alosaimi, Yixin Sun, Xingyu Liu

Gone but not forgotten: Marcin Eichner, Stuart Barnes, Jiwan Han, Anna Gaszczak, Najla Megherbi, Ioannis Katramados, Greg Flitton, Andre Mouton, Marina Magnabosco, Olegs Mise, Alex Richardson, Oliver Hamilton, Dereck Webster, Chris Holder, Sheraz Shahid, Pedro Cavestany, Mikolaj Kundegorski, Micheal Devereux, Samet Akcay, Amir Atapour-Abarghouei, Khalid Ismail, Qian Wang, Grégoire Payen de La Garanderie, Bruna Maciel-Pearson, Nik Khadijah Nik Aznan, Philip Adey, Naif Alshammari, Will Prew, Hiroshi Sasaki, Aishah Alsehaim, Matt Poyser

Efficiencies in 3D Environment Understanding for Future Autonomous Driving



.... Openday tours of key research topics

Virtual Lab Tour: Applied Computer Vision



Department of

## Computer Science



Prof. Toby Breckon

• Our research lab ...



# algorithms for processing visual information

#### **Automated Visual Surveillance**









[Kundegorski / Breckon et al. '14]



VENCLE (235) T-1497(70 ENV: 190. 4x4: 0 Van: 0 HGV: 0

[Kundegorski / Breckon et al. '16]



[Kundegorski / Breckon et al. '15]





Cam: Lat:54.767N, Lon:-1.57006E, 290deg





Cam: Lat:54.767N, Lon:-1.57006E, 290deg T 2: 54.767N, -1.57026E T 4: 54.767N, -1.57027E



[ -- Detection: People -- ]

Working with:







#### Cam: Lat:54.7668N, Lon:-1.57E, 100 deg



#### **Automated Wide Area Search**



















## **Future Vehicle Autonomy**

[Hamilton, Breckon, 2013]







#### **Future Vehicle Autonomy**













Efficiencies in 3D Environment Understanding for Future Autonomous Driving

#### **Future Vehicle Autonomy**













#### Generalized Dynamic Object Removal for Dense Stereo Vision Based Scene Mapping using Synthesised Optical Flow

Image View

D50 -0X

/faster\_rcnn\_node/detection\_image • 👩 V 10.00my

/faster\_rcnn\_node/detection\_image\_mouse\_left



RViz[\*]

D00 -0X



### **Future Aviation Security**









Working with:





#### via connected screening capability

• Durham software intercepts image made available on network

Efficiencies in 3D Environment Understanding for Future Autonomous Driving



[Akcay, Kundegorski, Willcocks, Breckon - 2018]

















Department for Transport









 Home Office















# algorithms for processing visual information





#### Less is More Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation

#### Li Li<sup>1</sup>, Hubert P. H. Shum<sup>1</sup>, Toby P. Breckon<sup>1,2</sup>

Department of {Computer Science<sup>1</sup> | Engineering<sup>2</sup>} Durham University

li.li4@durham.ac.uk

### **Point Cloud Semantic Segmentation**



Input: point cloud data

**Output**: semantic segmentation prediction

### **Future Vehicle Autonomy**

Modern vehicles contain a range of dynamics tunable to the road environment ....



#### LESS IS MORE



#### **Previous methods**

### LESS IS MORE



## Contributions



10


training >

data module

loss function

to utilize **reflectivity–prior descriptors** and adapt the **Mean Teacher** framework to generate high–quality pseudo–labels



pseudo labelling

data module

loss function

to fix the trained teacher model prediction in a CRB manner, expanding dataset with Reflec-TTA during test time



data module

loss function

distillation<br/>& unreliable learningto train on the generated pseudo-labels, and utilize unreliable<br/>pseudo-labels in a memory bank for improved discrimination



#### Input tensor ${\mathcal F}$



submanifold sparse convolution
pointwise convolution



submanifold sparse convolution
pointwise convolution





submanifold sparse convolution pointwise convolution

we can achieve:

Using ST-RFD to extract a maximally diverse data subset for training by **removing temporal redundancy** and hence future **annotation requirements** 









#### Using Unreliable Pseudo–labels to Make Full Use of All Available Labels



$$\begin{split} \mathcal{L}_{C} &= -\frac{1}{C} \sum_{c=0}^{C-1} \ \mathop{\mathbb{E}}_{\mathbf{E}_{c}} \left[ \log \frac{f(\mathbf{e}_{c}, \mathbf{e}_{c}^{+}, \tau)}{\sum_{\mathbf{e}_{c,j}^{-} \in \mathbf{E}_{c}^{-}} f(\mathbf{e}_{c}, \mathbf{e}_{c,j}^{-}, \tau)} \right] \\ &= -\frac{1}{C} \sum_{c=0}^{C-1} \ \mathop{\mathbb{E}}_{\mathbf{E}_{c}} \left[ \log \frac{\exp(\langle \mathbf{e}_{c}, \mathbf{e}_{c}^{+} \rangle / \tau)}{\exp(\langle \langle \mathbf{e}_{c}, \mathbf{e}_{c}^{+} \rangle / \tau) + \sum_{j=1}^{N-1} \exp(\langle \langle \mathbf{e}_{c}, \mathbf{e}_{c,j}^{-} \rangle / \tau)} \right] \end{split}$$



#### Using Unreliable Pseudo–labels to Make Full Use of All Available Labels



#### Using reflectivity-based Test Time Augmentation to enhance performance of false or non-existent pseudo-labels



#### Using reflectivity-based Test Time Augmentation to enhance performance of false or non-existent pseudo-labels



we apply various sizes of bins in cylindrical coordinates to analyze the intrinsic point distribution at varying resolutions (shown in  $h_1$ ,  $h_2$  and  $h_3$ ).

#### Using reflectivity-based Test Time Augmentation to enhance performance of false or non-existent pseudo-labels



Less is More: Reducing Task and Model Complexity for Semi-Supervised 3D Point Cloud Semantic Segmentation

## Comparative mIoU for Semi–supervised Methods

| Donn  | Sama  | Method                    |           | SemanticKITTI [7] |             |             |             |             |                  | ScribbleKITTI [46] |             |       |       |             |                  |             |       |
|-------|-------|---------------------------|-----------|-------------------|-------------|-------------|-------------|-------------|------------------|--------------------|-------------|-------|-------|-------------|------------------|-------------|-------|
| Kepr. | Samp. | Method                    |           | 1%                | 5%          | 10%         | 20%         | 40%         | 50%              | 100%               | 1%          | 5%    | 10%   | 20%         | 40%              | 50%         | 100%  |
| Range | U     | LaserMix [32]             | (2022)    | 43.4              | -           | 58.8        | 59.4        | -           | 61.4             | -                  | 38.3        | -     | 54.4  | 55.6        | -                | 58.7        | _     |
|       | U     | Cylinder3D [63]           | (CVPR'21) | _                 | 45.4        | 56.1        | 57.8        | 58.7        | <del>~~</del> :: | 67.8               | _           | 39.2  | 48.0  | 52.1        | 53.8             | -           | 56.3  |
|       | U     | LaserMix [32]             | (2022)    | 50.6              | 1 <u></u> 1 | 60.0        | <u>61.9</u> | 8 <u>—8</u> | 62.3             | -                  | 44.2        | -     | 53.7  | 55.1        | _                | 56.8        |       |
| Voxel | Р     | Jiang <i>et al</i> . [29] | (ICCV'21) | 5 <del></del> 8   | 41.8        | 49.9        | 58.8        | 59.9        |                  | 65.8               | 0.00        |       |       | -           | ( <del></del> )) | -           | 10000 |
|       | U     | Unal et al. [46]          | (CVPR'22) | -                 | 49.9*       | 58.7*       | 59.1*       | 60.9        | _                | <u>68.2</u> *      | _           | 46.9* | 54.2* | 56.5*       | 58.6*            | —           | 61.3  |
|       | S     | LiM3D+SDSC                | (ours)    | <u>57.2</u>       | <u>57.6</u> | <u>61.0</u> | 61.7        | <u>62.1</u> | 62.7             | 67.5               | <u>55.8</u> | 56.1  | 56.9  | <u>57.2</u> | <u>58.9</u>      | <u>59.3</u> | 60.7  |
|       | S     | LiM3D                     | (ours)    | 58.4              | 59.5        | 62.2        | 63.1        | 63.3        | 63.6             | 69.5               | 57.0        | 58.1  | 61.0  | 61.2        | 62.0             | 62.1        | 62.4  |

## Comparative mIoU for Semi–supervised Methods

| Dann  | Sama  | Mathad                    |           | SemanticKITTI [7] |              |       |       |              |      | ScribbleKITTI [46] |      |                 |               |       |               |      |      |
|-------|-------|---------------------------|-----------|-------------------|--------------|-------|-------|--------------|------|--------------------|------|-----------------|---------------|-------|---------------|------|------|
| Kepr. | Samp. | Method                    |           | 1%                | 5%           | 10%   | 20%   | 40%          | 50%  | 100%               | 1%   | 5%              | 10%           | 20%   | 40%           | 50%  | 100% |
| Range | U     | LaserMix [32]             | (2022)    | 43.4              | -            | 58.8  | 59.4  | -            | 61.4 | -                  | 38.3 | —               | 54.4          | 55.6  | -             | 58.7 | _    |
|       | U     | Cylinder3D [63]           | (CVPR'21) | -                 | 45.4         | 56.1  | 57.8  | 58.7         | -    | 67.8               | _    | 39.2            | 48.0          | 52.1  | 53.8          |      | 56.3 |
|       | U     | LaserMix [32]             | (2022)    | 50.6              | 17 <u></u> 1 | 60.0  | 61.9  | 17 <u>11</u> | 62.3 | 7 <u></u> 7        | 44.2 |                 | 53.7          | 55.1  |               | 56.8 |      |
| Voxel | Р     | Jiang <i>et al</i> . [29] | (ICCV'21) |                   | 41.8         | 49.9  | 58.8  | 59.9         |      | 65.8               | 555  | 5 <del></del> 8 | 3 <del></del> | -     | ( <del></del> | -    | 000  |
|       | U     | Unal et al. [46]          | (CVPR'22) | -                 | 49.9*        | 58.7* | 59.1* | 60.9         | -    | 68.2*              | _    | 46.9*           | 54.2*         | 56.5* | 58.6*         | -    | 61.3 |
|       | S     | LiM3D+SDSC                | (ours)    | 57.2              | 57.6         | 61.0  | 61.7  | 62.1         | 62.7 | 67.5               | 55.8 | 56.1            | 56.9          | 57.2  | 58.9          | 59.3 | 60.7 |
|       | S     | LiM3D                     | (ours)    | 58.4              | 59.5         | 62.2  | 63.1  | 63.3         | 63.6 | 69.5               | 57.0 | 58.1            | 61.0          | 61.2  | 62.0          | 62.1 | 62.4 |

# Component–wise Ablation (Ours)

|           | UP RF RT ST  |              |              | SD           | Tr           | raining | mIoU (9 | %)   | Va          | #Params |      |      |      |      |
|-----------|--------------|--------------|--------------|--------------|--------------|---------|---------|------|-------------|---------|------|------|------|------|
|           |              |              |              |              |              | 5%      | 10%     | 20%  | 40%         | 5%      | 10%  | 20%  | 40%  | (M)  |
|           |              |              |              |              |              | 82.8    | 87.5    | 87.8 | 88.2        | 54.8    | 58.1 | 59.3 | 60.8 | 49.6 |
|           | $\checkmark$ |              |              |              |              | _       | _       | _    | _           | 55.9    | 58.8 | 59.9 | 61.2 | 49.6 |
|           | $\checkmark$ | $\checkmark$ |              |              |              | 83.6    | 88.3    | 88.7 | 89.1        | 56.8    | 59.6 | 60.5 | 61.4 | 49.6 |
|           | $\checkmark$ |              | $\checkmark$ |              |              | _       | _       | _    | _           | 57.5    | 59.8 | 61.2 | 62.6 | 49.6 |
|           | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | _       | _       | _    | -           | 58.7    | 61.3 | 62.4 | 62.8 | 49.6 |
| LiM3D     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | 85.2    | 89.1    | 89.5 | <b>89.7</b> | 59.5    | 62.2 | 63.1 | 63.3 | 49.6 |
| iM3D+SDSC | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 83.8    | 88.6    | 89.0 | 89.2        | 57.6    | 61.0 | 61.7 | 62.1 | 21.5 |

- UP Unreliable Pseudo labeling
- RT Reflec-TTA

L

SD SDSC module

- RF Reflectivity Feature
- ST ST-RFD

# Component–wise Ablation (Ours)

|                    | UP           | RF           | RT           | ST           | SD           | Tı<br>5%            | aining<br>10%       | mIoU (9<br>20%      | %)<br>40%           | Va<br>5%            | lidation<br>10%     | mIoU (<br>20%       | (%)<br>40%          | #Params<br>(M)      |
|--------------------|--------------|--------------|--------------|--------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                    | <u></u>      |              |              |              |              | 82.8                | 87.5                | 87.8                | 88.2                | 54.8<br>55 9        | 58.1<br>58.8        | 59.3<br>59.9        | 60.8<br>61.2        | 49.6                |
|                    | <b>√</b>     | $\checkmark$ |              |              |              | 83.6                | 88.3                | 88.7                | 89.1                | 56.8                | 59.6                | 60.5                | 61.4                | 49.6                |
|                    | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | _                   | _                   | _                   | _                   | 57.5<br>58.7        | 59.8<br>61.3        | 61.2<br>62.4        | 62.6<br>62.8        | 49.6<br>49.6        |
| LiM3D<br>iM3D+SDSC | √<br>√       | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | <b>85.2</b><br>83.8 | <b>89.1</b><br>88.6 | <b>89.5</b><br>89.0 | <b>89.7</b><br>89.2 | <b>59.5</b><br>57.6 | <b>62.2</b><br>61.0 | <b>63.1</b><br>61.7 | <b>63.3</b><br>62.1 | 49.6<br><b>21.5</b> |

- UP Unreliable Pseudo labeling
- RT Reflec-TTA

L

SD SDSC module

- RF Reflectivity Feature
- ST ST-RFD

### The Computation Cost and mIoU Under 5%-labeled Training Results

| Method                   | # Parameters | # Mult-Adds   | SeK [7]     | ScK [45]    |
|--------------------------|--------------|---------------|-------------|-------------|
| Cylider3D [61]           | 56.3         | 476.9M        | 45.4        | 39.2        |
| Ozan <i>et al</i> . [45] | 49.6         | 420.2M        | 49.9        | 46.9        |
| 2DPASS [56]              | 26.5         | <u>217.4M</u> | 51.7        | 45.1        |
| MinkowskiNet [13]        | 21.7         | 114.0G        | 42.4        | 35.8        |
| SPVNAS [43]              | 12.5         | 73.8G         | 45.1        | 38.9        |
| LiM3D+SDSC (ours)        | <u>21.5</u>  | <b>182.0M</b> | <u>57.6</u> | <u>54.7</u> |
| LiM3D (ours)             | 49.6         | 420.2M        | 59.5        | 58.1        |

### The Computation Cost and mIoU Under 5%-labeled Training Results

| Method                   | # Parameters | # Mult-Adds   | SeK [7] | ScK [45] |
|--------------------------|--------------|---------------|---------|----------|
| Cylider3D [61]           | 56.3         | 476.9M        | 45.4    | 39.2     |
| Ozan <i>et al</i> . [45] | 49.6         | 420.2M        | 49.9    | 46.9     |
| 2DPASS [56]              | 26.5         | 217.4M        | 51.7    | 45.1     |
| MinkowskiNet [13]        | 21.7         | 114.0G        | 42.4    | 35.8     |
| SPVNAS [43]              | 12.5         | 73.8G         | 45.1    | 38.9     |
| LiM3D+SDSC (ours)        | 21.5         | <b>182.0M</b> | 57.6    | 54.7     |
| LiM3D (ours)             | 49.6         | 420.2M        | 59.5    | 58.1     |

2.3X model size reduction

641x fewer multiply-adds

### DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications



<u>Li Li</u> Khalid N. Ismail Hubert P. H. Shum Toby P. Breckon

International Conference on 3D Vision, 2021

li.li4@durham.ac.uk



## **DurLAR Dataset - Overview**









- A High-fidelity **128-channel LiDAR Dataset** 
  - 100k+ frames
  - $\,\circ\,\,$  Synchronised at 10Hz
- First dataset with LiDAR panoramic imagery
  - Ambient imagery
  - Reflectivity imagery
- **Diversity**: time of day, repeated locations, weather
- Monocular Depth Estimation benchmark test
  - Self-supervised ManyDepth
  - Supervised/Self-supervised ManyDepth


## Higher Fidelity: 128 vs. 64/32 channel LiDAR



### LiDAR Panoramic Imagery



Ambient

day/night scene visibility in the near-IR spectrum

#### Reflectivity

information indicative of the material properties of the object itself and offer good consistency across illumination conditions and range.

### **Diversity of Dataset Environments**





### Comparison with Existing Public LiDAR Datasets

| D       | Dataset       | Resolution | Range/m | Diversity      | Ima     | ge        | #Frames  | Other sensors  |
|---------|---------------|------------|---------|----------------|---------|-----------|----------|----------------|
|         | DENSE         | 64         | 120     | E/W/T          | Ι       |           | 1M       | D/M/F/T/B      |
|         | H3D           | 64         | 120     | E              | I       |           | 28k      | G/M            |
| KITTI I | SemanticKITTI | 64         | 120     | E              | I       |           | 93k      | N/S/G/M/B      |
| KI      | ITTI-360      | 64         | 120     | E              | I       |           | 320k     | N/S/G/M/B      |
| L       | iVi-Set       | 32         | 100     | E              | I       |           | 10k      |                |
| Lyf     | t Level 5     | 64         | 200     | E/W/T          | I       |           | 170k     | D/B            |
| n       | uScenes       | 32         | 100     | E/W/T          | I       |           | 1M       | M/D/B          |
| 0xfor   | rd RobotCar   | 4          | 50      | E/W/T          | I       |           | 3M       | N/S/G/M/B      |
| Stan    | ford Track    | 64         | 120     | E              | I       |           | 14k      | Μ              |
| Sydney  | Urban Objects | 64         | 120     | E              | I       |           | 0.6k     |                |
| Durl    | _AR (ours)    | 128        | 120     | E/W/T/L        | I/A     | /R        | 100k     | U/N/S/G/M/B    |
| Ттаде   | Refer to      | Diversity  | 1       | Refer to       | Sansons | Refer to  | Sansons  | Refer to       |
| т       | intoncity     |            |         |                |         | neden     | Jensor s |                |
| Ţ       | Littensity    |            | e       |                | D       |           |          |                |
| A       | ambient       | W          | weat    | cher condition | 0       | lux meter |          | FIR camera     |
| R       | reflectivity  |            | t       | imes of day    | Ν       | GNSS      |          | Near IR camera |
|         |               | L          | repe    | eated location | S       | INS       | В        | stereo camera  |
|         |               |            |         |                | G       | GPS       |          |                |

### Comparison with Existing Public LiDAR Datasets

|         | Dataset       | Resolution | Range/m | Diversity     | Ima      | ge        | #Frames  | Other sensors  |
|---------|---------------|------------|---------|---------------|----------|-----------|----------|----------------|
|         | DENSE         | 64         | 120     | E/W/T         | I        |           | 1M       | D/M/F/T/B      |
|         | H3D           | 64         | 120     | E             | I        |           | 28k      | G/M            |
| KITTI I | SemanticKITTI | 64         | 120     | E             | I        |           | 93k      | N/S/G/M/B      |
| K       | ITTI-360      | 64         | 120     | E             | I        |           | 320k     | N/S/G/M/B      |
| L       | iVi-Set       | 32         | 100     | E             | I        |           | 10k      |                |
| Lyf     | t Level 5     | 64         | 200     | E/W/T         | I        |           | 170k     | D/B            |
| n       | uScenes       | 32         | 100     | E/W/T         | I        |           | 1M       | M/D/B          |
| Oxfor   | rd RobotCar   | 4          | 50      | E/W/T         | I        |           | 3M       | N/S/G/M/B      |
| Stan    | ford Track    | 64         | 120     | E             | I        |           | 14k      | Μ              |
| Sydney  | Urban Objects | 64         | 120     | E             | I        |           | 0.6k     |                |
| 🛑 Durl  | AR (ours)     | 128        | 120     | E/W/T/L       | I/A      | /R        | 100k     | U/N/S/G/M/B    |
| Tmago   | Defen to      | Divorcity  |         | Defen to      | Concorre | Defen to  | Concorre | Dofor to       |
| Twage   | Refer to      | Diversity  | /       | Kerer to      | Sensors  | Kerer to  | Sensors  | Kerer to       |
| T       | intensity     | E          | e       | nvironments   | D        | radar     | Μ        | TMO            |
| Α       | ambient       | W          | weat    | her condition | U        | lux meter | F        | FIR camera     |
| R       | reflectivity  | Т          | ť       | imes of day   | Ν        | GNSS      | Т        | Near IR camera |
|         |               | L          | repe    | ated location | S        | INS       | В        | stereo camera  |
|         |               |            |         |               | G        | GPS       |          |                |

### **On Vehicle Sensor Placement**



- 1 Ouster LiDAR
- 2 Stereo camera
- **3** GNSS/INS antenna
- **3** GNSS/INS (inside)
- 4 Lux meter







## Calibration and Synchronisation



All sensor synchronisation is performed at a rate of **10 Hz**, using ROS (version Noetic) timestamps operating over a Gigabit Ethernet backbone to a common host (Intel Core i5, 16 GB RAM).



| Sensor    | Collecting rate | External calibration     |
|-----------|-----------------|--------------------------|
| Lidar     | 10Hz            | (a) Stereo; (b) GNSS/INS |
| GNSS/INS  | 100Hz           | (b) LiDAR; stereo        |
| Stereo    | 30Hz            | (a) LiDAR; GNSS/INS      |
| Lux meter | 30Hz            |                          |

### DurLAR Exemplar Environment - City -





### DurLAR Exemplar Environment - Campus -





## DurLAR Exemplar Environment - Highway -





### DurLAR Exemplar Environment - Suburban -





## **Benchmark Task: Monocular Depth Estimation**

Supervised/self-supervised ManyDepth





## **Benchmark Task: Monocular Depth Estimation**

Supervised/self-supervised ManyDepth



Monocular Depth Estimation



ManyDepth [Watson et al., 2021]





LiDAR depth ground truth

Monocular Depth Estimation

|           | Abs<br>Rel | Sq<br>Rel | RMSE      | RMSE<br>log | δ<br>< 1.25 | δ<br>< 1.25 <sup>2</sup> | $\delta$<br>< 1.25 <sup>3</sup> |
|-----------|------------|-----------|-----------|-------------|-------------|--------------------------|---------------------------------|
| ManyDepth | 0.109      | 1.111     | 3.875     | 0.177       | 0.901       | 0.966                    | 0.984                           |
| Ours      | 0.10<br>4  | 0.93<br>6 | 3.63<br>9 | 0.17<br>1   | 0.906       | 0.969                    | 0.986                           |







Monocular Depth Estimation

|           | Abs<br>Rel | Sq<br>Rel | RMSE      | RMSE<br>log | δ<br>< 1.25 | $\delta$ < 1.25 <sup>2</sup> | $\delta < 1.25^3$ |
|-----------|------------|-----------|-----------|-------------|-------------|------------------------------|-------------------|
| ManyDepth | 0.109      | 1.111     | 3.875     | 0.177       | 0.901       | 0.966                        | 0.984             |
| Ours      | 0.10<br>4  | 0.93<br>6 | 3.63<br>9 | 0.17<br>1   | 0.906       | 0.969                        | 0.986             |







Monocular Depth Estimation

|           | Abs<br>Rel | Sq<br>Rel | RMSE      | RMSE<br>log | δ<br>< 1.25 | $\delta$ < 1.25 <sup>2</sup> | δ<br>< 1.25 <sup>3</sup> |
|-----------|------------|-----------|-----------|-------------|-------------|------------------------------|--------------------------|
| ManyDepth | 0.109      | 1.111     | 3.875     | 0.177       | 0.901       | 0.966                        | 0.984                    |
| Ours      | 0.10<br>4  | 0.93<br>6 | 3.63<br>9 | 0.17<br>1   | 0.906       | 0.969                        | 0.986                    |







Monocular Depth Estimation

|           | Abs<br>Rel | Sq<br>Rel | RMSE      | RMSE<br>log | δ<br>< 1.25 | $\delta$ < 1.25 <sup>2</sup> | δ<br>< 1.25 <sup>3</sup> |
|-----------|------------|-----------|-----------|-------------|-------------|------------------------------|--------------------------|
| ManyDepth | 0.109      | 1.111     | 3.875     | 0.177       | 0.901       | 0.966                        | 0.984                    |
| Ours      | 0.10<br>4  | 0.93<br>6 | 3.63<br>9 | 0.17<br>1   | 0.906       | 0.969                        | 0.986                    |







#### Monocular Depth Estimation

| Dataset    | Method         | +S | WxH      | Abs Rel | Sq Rel | RMSE  | RMSE<br>log | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|------------|----------------|----|----------|---------|--------|-------|-------------|-----------------|-------------------|-------------------|
| KITTI      | ManyDepth (MR) | Х  | 640x192  | 0.098   | 0.770  | 4.459 | 0.176       | 0.900           | 0.965             | 0.983             |
|            | ManyDepth (MR) | Х  | 1024x320 | 0.093   | 0.715  | 4.245 | 0.172       | 0.909           | 0.966             | 0.983             |
| Cityscapes | ManyDepth      | Х  | 416x128  | 0.114   | 1.193  | 6.223 | 0.170       | 0.875           | 0.967             | 0.989             |
|            | Depth-hints    | Х  | 640x192  | 0.122   | 1.070  | 4.148 | 0.211       | 0.870           | 0.946             | 0.972             |
|            | Depth-hints    |    | 640x192  | 0.121   | 1.109  | 4.121 | 0.210       | 0.874           | 0.946             | 0.972             |
|            | MonoDepth2     | Х  | 640x192  | 0.111   | 1.114  | 4.002 | 0.187       | 0.895           | 0.960             | 0.981             |
|            | MonoDepth2     |    | 640x192  | 0.108   | 1.010  | 3.804 | 0.185       | 0.898           | 0.963             | 0.982             |
| DUPLAK     | ManyDepth (MR) | Х  | 640x192  | 0.115   | 1.227  | 4.116 | 0.186       | 0.892           | 0.962             | 0.982             |
|            | ManyDepth (MR) |    | 640x192  | 0.109   | 0.936  | 3.711 | 0.176       | 0.895           | 0.964             | 0.984             |
|            | ManyDepth (HR) | Х  | 1024x320 | 0.109   | 1.111  | 3.875 | 0.177       | 0.901           | 0.966             | 0.984             |
|            | ManyDepth (HR) |    | 1024x320 | 0.104   | 0.936  | 3.639 | 0.171       | 0.906           | 0.969             | 0.986             |

+S=√ Supervised/self-supervised ManyDepth

+S=x self-supervised ManyDepth

#### Monocular Depth Estimation

| Dataset    | Method         | +S | WxH      | Abs Rel | Sq Rel       | RMSE         | RMSE<br>log  | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^{3}$ |
|------------|----------------|----|----------|---------|--------------|--------------|--------------|-----------------|-------------------|---------------------|
|            | ManyDepth (MR) | Х  | 640x192  | 0.098   | 0.770        | 4.459        | 0.176        | 0.900           | 0.965             | 0.983               |
| NI I I     | ManyDepth (MR) | Х  | 1024x320 | 0.093   | 0.715        | 4.245        | 0.172        | 0.909           | 0.966             | 0.983               |
| Cityscapes | ManyDepth      | Х  | 416x128  | 0.114   | 1.193        | 6.223        | 0.170        | 0.875           | 0.967             | 0.989               |
|            | Depth-hints    | Х  | 640x192  | 0.122   | 1.070        | 4.148        | 0.211        | 0.870           | 0.946             | 0.972               |
|            | Depth-hints    |    | 640x192  | 0.121   | 1.109        | 4.121        | 0.210        | 0.874           | 0.946             | 0.972               |
|            | MonoDepth2     | Х  | 640x192  | 0.111   | 1.114        | 4.002        | 0.187        | 0.895           | 0.960             | 0.981               |
|            | MonoDepth2     |    | 640x192  | 0.108   | <u>1.010</u> | <u>3.804</u> | 0.185        | 0.898           | 0.963             | 0.982               |
| DUPLAK     | ManyDepth (MR) | Х  | 640x192  | 0.115   | 1.227        | 4.116        | 0.186        | 0.892           | 0.962             | 0.982               |
|            | ManyDepth (MR) |    | 640x192  | 0.109   | 0.936        | 3.711        | <u>0.176</u> | 0.895           | 0.964             | <u>0.984</u>        |
|            | ManyDepth (HR) | Х  | 1024x320 | 0.109   | 1.111        | 3.875        | 0.177        | <u>0.901</u>    | 0.966             | <u>0.984</u>        |
|            | ManyDepth (HR) |    | 1024x320 | 0.104   | 0.936        | 3.639        | 0.171        | 0.906           | 0.969             | 0.986               |

+S=√ Supervised/self-supervised ManyDepth

self-supervised ManyDepth

+S=x

#### **Cross-Dataset Tests**

#### Monocular Depth Estimation - ManyDepth

| Config. | Abs Rel | Sq Rel | RMSE  | RMSE<br>log | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|---------|---------|--------|-------|-------------|-----------------|-------------------|-------------------|
| К       | 0.159   | 1.536  | 5.101 | 0.244       | 0.798           | 0.923             | 0.963             |
| D       | 0.189   | 1.764  | 5.580 | 0.264       | 0.758           | 0.908             | 0.959             |
| K+D     | 0.188   | 1.941  | 5.182 | 0.262       | 0.769           | 0.912             | 0.958             |
| D+K     | 0.151   | 1.123  | 4.744 | 0.233       | 0.805           | 0.927             | 0.967             |

| Notation | The Training Configuration         |
|----------|------------------------------------|
| К        | KITTI only                         |
| D        | DurLAR only                        |
| K+D      | KITTI then fine-tuning with DurLAR |
| D+K      | DurLAR then fine-tuning with KITTI |

#### **Cross-Dataset Tests**

#### Monocular Depth Estimation - ManyDepth

| Config. | Abs Rel | Sq Rel | RMSE  | RMSE<br>log | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|---------|---------|--------|-------|-------------|-----------------|-------------------|-------------------|
| К       | 0.159   | 1.536  | 5.101 | 0.244       | 0.798           | 0.923             | 0.963             |
| D       | 0.189   | 1.764  | 5.580 | 0.264       | 0.758           | 0.908             | 0.959             |
| K+D     | 0.188   | 1.941  | 5.182 | 0.262       | 0.769           | 0.912             | 0.958             |
| D+K     | 0.151   | 1.123  | 4.744 | 0.233       | 0.805           | 0.927             | 0.967             |

| Notation | The Training Configuration         |  |  |  |  |  |  |
|----------|------------------------------------|--|--|--|--|--|--|
| К        | KITTI only                         |  |  |  |  |  |  |
| D        | DurLAR only                        |  |  |  |  |  |  |
| K+D      | KITTI then fine-tuning with DurLAR |  |  |  |  |  |  |
| D+K      | DurLAR then fine-tuning with KITTI |  |  |  |  |  |  |

### **Ablation Results**

#### Monocular Depth Estimation

| vRes   | Abs Rel | Sq Rel | RMSE  | RMSE<br>log | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|--------|---------|--------|-------|-------------|-----------------|-------------------|-------------------|
| 32/+S  | 0.115   | 0.908  | 3.677 | 0.179       | 0.888           | 0.966             | 0.985             |
| 64/+S  | 0.107   | 0.918  | 3.735 | 0.175       | 0.895           | 0.967             | 0.986             |
| 128/-S | 0.109   | 1.111  | 3.875 | 0.177       | 0.901           | 0.966             | 0.984             |
| 128/+S | 0.104   | 0.936  | 3.639 | 0.171       | 0.906           | 0.969             | 0.986             |

+S Supervised/self-supervised ManyDepth

-S self-supervised ManyDepth

## **Ablation Results**

#### Monocular Depth Estimation

| vRes   | Abs Rel | Sq Rel       | RMSE  | RMSE<br>log  | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25^3$ |
|--------|---------|--------------|-------|--------------|-----------------|-------------------|-------------------|
| 32/+S  | 0.115   | 0.908        | 3.677 | 0.179        | 0.888           | 0.966             | <u>0.985</u>      |
| 64/+S  | 0.107   | <u>0.918</u> | 3.735 | <u>0.175</u> | 0.895           | <u>0.967</u>      | 0.986             |
| 128/-S | 0.109   | 1.111        | 3.875 | 0.177        | 0.901           | 0.966             | 0.984             |
| 128/+S | 0.104   | 0.936        | 3.639 | 0.171        | 0.906           | 0.969             | 0.986             |

- +S Supervised/self-supervised ManyDepth
- -S self-supervised ManyDepth



64 channels 50%







32 channels 75%

## **Future Applications**



reflectivity/ambient

SLAM

Driver Attention Monitoring



Hyundai-NGV Open R&D Seminar

# Efficiencies in 3D Environment Understanding for Future Autonomous Driving

#### Li Li

Department of Computer Science Durham University

li.li4@durham.ac.uk | https://www.luisli.org