

Motivation & Contributions

Range-Aware Pointwise Distance Distribution (RAPiD) is the feature for 3D LiDAR segmentation that ensures robustness to rigid transformations and viewpoints through isometry-invariant metrics.

- A novel method for embedding RAPiD with class-aware double nested AE to optimize the embedding of high-dimensional features, balancing efficiency and fidelity.
- A novel open-source network architecture RAPiD-Seg and supporting training methodology for LiDAR segmentation.
- SoTA LiDAR segmentation performance in terms of mIoU on SemanticKITTI (76.1) and nuScenes (83.6) dataset.

RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation

Li Li, Hubert P. H. Shum, Toby Breckon Durham University {li.li4, hubert.shum, toby.breckon}@durham.ac.uk

RAPID-Seg Architecture is a double nested AE structure with a novel class-aware embedding objective, to reduce computational costs while providing feature learning capacity.

The k-point RAPiD in region FRAPiD $(P_{RoI}; k) = sor$ $\forall l \in \{1, \ldots, k\}, j \in \{1, \ldots, u\}, \ \rho_{j,l}$ $oldsymbol{
ho}_{j,l} = ig\| ig[oldsymbol{p}_j - ig]$

- (a) R-RAPiD-Seg
- (a) R-RAPID-Seg. We first construct the lightweight R-RAPiD-Seg network for fast 3D segmentation.
- embedding fidelity within individual semantic classes.

Methodology

P_{RoI} is defined as:
rt
$$\left(\left[\text{ sort} \left(\left[\boldsymbol{\rho}_{j,1}, \dots, \boldsymbol{\rho}_{j,k} \right] \right) \right]_{j=1}^{u} \right),$$

 l is given by:
P the $q(r_{i}) = q(r_{i+1}) \left[\left[\left[\left[\boldsymbol{\rho}_{j,1}, \dots, \boldsymbol{\rho}_{j,k} \right] \right] \right] \right]$

$$p_{j,l}, g(r_j) - g(r_{j,l}) \rfloor \parallel_2,$$

• (b) C-RAPiD-Seg. We then train the C-RAPiD-Seg network to facilitate the

Tab. Results on SemanticKITTI test set.

Meth	od mIo	U car	bicy	moto	truc	o.veh	ped	b.list	m.list	road	park	walk	o.gro	build	fenc	veg	trun	terr	pole	sign
Cylinder3D [64] 68.	9 97.1	l 67.6	63.8	50.8	58.5	73.7	69.2	48.0	92.2	65.0	77.0	32.3	90.7	66.5	85.6	72.5	69.8	62.4	66.2
AF2S3Net	[7] 69.	7 94.8	5 65.4	86.8	39.2	41.1	80.7	80.4	74.3	91.3	68.8	72.5	53.5	87.9	63.2	70.2	68.5	53.7	61.5	71.0
RPVNet [56 [70.	$3 \mid 97.6$	6 68.4	68.7	44.2	61.1	75.9	74.4	73.4	93.4	70.3	80.7	33.3	93.5	72.1	86.5	75.1	71.7	64.8	61.4
SDSeg3D [27] 70.	4 97.4	4 58.7	54.2	54.9	65.2	70.2	74.4	52.2	90.9	69.4	76.7	41.9	93.2	71.1	86.1	74.3	71.1	65.4	70.6
GASN [61] 70.	7 96.9	$9 \mid 65.8$	58.0	59.3	61.0	80.4	82.7	46.3	89.8	66.2	74.6	30.1	92.3	69.6	<u>87.3</u>	73.0	72.5	66.1	71.6
PVKD [17] 71.	$2 \mid 97.0$	67.9	69.3	53.5	60.2	75.1	73.5	50.5	91.8	70.9	77.5	41.0	92.4	69.4	86.5	73.8	71.9	64.9	65.8
2DPASS [58] 72.	9 97.0	63.6	63.4	61.1	61.5	77.9	<u>81.3</u>	74.1	89.7	67.4	74.7	40.0	<u>93.5</u>	72.9	86.2	73.9	71.0	65.0	70.4
PCSeg [36] 72.	9 97.8	5 51.2	67.6	58.6	68.6	78.3	80.9	75.6	92.5	71.5	78.3	36.9	93.1	71.4	85.4	73.6	69.9	66.1	68.7
RangeFormer [22] 73.	3 96.'	7 69.4	73.7	59.9	66.2	78.1	75.9	58.1	92.4	73.0	78.8	42.4	92.3	70.1	86.6	73.3	<u>72.8</u>	<u>66.4</u>	66.6
▲UniSeg [$37] \underline{75.}$	<u>2</u> 97.	9 71.9	75.2	63.6	<u>74.1</u>	78.9	74.8	60.6	92.6	<u>74.0</u>	<u>79.5</u>	46.1	93.4	<u>72.7</u>	87.5	76.3	73.1	68.3	68.5
RAPiD-Seg (Ou	rs) 76.	$1 \underline{97.'}$	7 71.1	76.2	72.5	80.7	79.9	79.1	59.8	91.8	78.2	78.6	46.0	93.6	72.1	86.9	74.6	72.3	65.9	68.5

Tab. Component-wise ablations.

Tab. Performance of different variants.

Fig. Qualitative results comparing our results and PCSeg baseline.

Experiments

Tab. Effects of k at various ranges.

		D	ן תח	52]	$\mathbf{R}\mathbf{A}\mathbf{PiD}$ (ours)							
	_		ן עע									
	k_{near}	$k_{ m mid}$	k_{far}	mIoU	$k_{ m near}$	$k_{ m mid}$	k_{far}	mIoU				
K	7	7	7	64.74 (-7.1)	7	7	7	$72.04 \ (+0.2)$				
SIM	5	5	5	65.18 (-6.6)	5	5	5	$72.28 \ (+0.5)$				
${\rm S}_{\oplus}$	10	7	5	66.23 (-5.6)	10	7	5	73.02 (+1.2)				
ne	6	6	6	72.19 (-6.5)	6	6	6	78.76 (+0.1)				
Ce	3	3	3	73.68 (-5.0)	3	3	3	$79.43 \ (+0.8)$				
nn	8	6	3	$72.24 \ (\textbf{-6.4})$	8	6	3	79.91 (+1.3)				

Method	mIoU %	car	ped	o.gro	pole
Baseline	70.0	97.2	78.1	35.4	63.5
R-RAPiD-Seg	72.3 (+2.3)	97.4	77.4	45.0	62.4
C-RAPiD-Seg	73.0 (+3.0)	97.7	79.3	44.6	66.4